Assessment Schedule - 2005

Chemistry: Describe the structure and reactions of organic compounds containing selected organic groups (90698)

Evidence Statement

NOTE: Candidates will be penalised once only for writing structures with missing H atoms.

Q		Evidence	Achievement	Achievement with Merit	Achievement with Excellence
1(a) (i)	Reagent 1 – KOH in <u>ethanol/</u> alcohol Reagent 2 – NaOH(aq) / NaOH/KOH / KOH (aq) /H ₂ O with OH ⁻ – not H ₂ O Reagent 3 – SOCl ₂ / PCl ₃ / PCl ₅ – not HCl)		TWO correct		
1(a) (ii), (iii)	Compound X (Minor CH ₃ CH ₂ CH ₂ Br or Solution of Minor processing of the CH ₃ CH ₂ COCl is processing of the Compound Y OCH ₃ -CH ₂ -C OR CH ₃ CH ₂ COOCH ₂ CO OR Full structure Name: ethyl propan	full structure duct: opanoyl chloride -CH ₂ -CH ₃	EITHER: Correct structure and name for compound X or Y OR Both structures X and Y correct OR Correct name for propanoyl chloride and correct name or structure for either compound X or Y OR Correct name for both compounds X and Y.	Understanding of reaction sequence demonstrated through FOUR answers correct	
1(b)	(i) Elimination (ii) Substitution (iii) Oxidation	The molecule HCl / a Cl atom and an H atom removed and a double bond is created. Br /Br; is removed and replaced / exchanged /swapped with /changed for / substituted with; an OH /OH group. Oxygen is added / hydrogen is removed / electrons are lost / the number of bonds to oxygen is increased / the oxidation number of carbon increases / Cr ₂ O ₇ ²⁻ is an oxidising agent / Cr ₂ O ₇ ²⁻ is reduced to Cr ³⁺ so the alcohol is oxidised.	TWO correct types of reaction.	Two types of reaction correct and each of these two linked with a valid explanation.	

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
1(c)	If the major product (2-bromopropane) remains in the flask when reagent 2 (NaOH(aq)) is added, a substitution reaction would cause the formation of the 2° alcohol propan-2-ol (CH ₃ CH(OH)CH ₃) as well as propan-1-ol) This would in turn be oxidised by the dichromate to the ketone/ propanone/ (CH ₃ COCH ₃). No further reaction with reagent 3 or ethanol will occur, so the final mixture would contain a lot of propanone and a smaller amount of the ester. (If all of the alcohol was not completely oxidised to the ketone, an ester with the ester group attached at the 2nd C atom might form with the propanoic acid and 2-chloropropane might result from excess propan-2-ol reacting with reagent 3.)	Either The major product is identified by name /structural formula/ description of Br on the second or middle carbon atom OR the nature of the major product is implied by the identification of the subsequent secondary alcohol.	Either Answer recognises that there are TWO possible substitution products with OH i.e a 1° and a 2° alcohol or the named products propan-1-ol and propan-2-ol.	Answer clearly indicates that oxidation would produce a ketone/ propanone / CH ₃ COCH ₃ (as the final product from propan-2-ol).
2(a)	Enantiomers of compound A CH3 CH=CH2 OH H HO CH=CH2 CH=CH2	One isomer drawn correctly with 3-dimensional arrangement of groups around chiral OR The isomers are exact mirror images of a 3D structure that has a minor error in the formula or an error in the way the groups are connected to the chiral C atom.	Both isomers with correct formulae are drawn as enantiomers showing 3-dimensional arrangement around chiral C.	
2(b)	Compound B (cis) H H H C=C CH ₃ CH ₂ -OH Compound C (trans) CH ₃ H C=C H CH ₂ -OH primary alcohols contain a □CH ₂ OH group/general formula is R-CH ₂ OH	A correct structure is drawn for ONE compound, ie it contains a 1° alcohol group and an alkene group and is capable of <i>cis-trans</i> isomers OR Cis and trans isomers are shown but the OH is not 1° OR The <i>cis-trans</i> relationship is correct but there is a minor error in the formula of the 1st compound.	BOTH cis and trans isomers with correct formulae and the OH in the 1 ⁰ position, are correctly drawn in the correct box.	

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
2(c) (i)	Compound D is butanal $CH_3-CH_2-CH_2-C$ H OR methylpropanal CH_3 $CH_3-C-C=O$ $ $	EITHER the name OR structural formula correct.		
2(c) (ii)	Tollens' – a silver mirror forms / silver / black: particles / precipitate / solid. Benedict's – a change from the blue solution to green / yellow / orange / orange-red / red: colour / precipitate /solid	At least ONE of the observations correctly described.		
2(d)	Compound E is $ \begin{array}{c} \text{CH}_3-\text{C}-\text{CH}_2-\text{CH}_3\\ \\ \\ \\ \\ \\ \\ \\ \\ $	ONE structure drawn is correct and in either box.	EITHER Compound F, the cyclic alcohol is in correct box OR TWO structures correct BUT NOT in the correct box	Valid structure for BOTH compounds and in the correct box.
3(a)		At least one amide (peptide) link is circled.		
	(ii) Under alkaline conditions products would be H ₂ N CH CH ₂ CH ₂ COONa COONa H ₂ N CH(CH ₂ SH)COONa H ₂ N CH ₂ COONa OR The structures above with COO ⁻ instead of COONa Under acidic conditions the NH ₂ group would be protonated (to NH ₃ ⁺) in each case and COOH would be present instead of COO ⁻ / COONa.	ONE correct hydrolysis product drawn with either COO ⁻ or COONa or COOH group	Either Structures of TWO products of the alkaline hydrolysis (with COONa, or COO ⁻) (not COOH) OR for the acid hydrolysis the answer discusses the protonation of the NH ₂ (to NH ₃ ⁺) and the presence of COOH rather than COONa /COO ⁻ .	Correct structures of TWO products of the alkaline hydrolysis with COONa or COO ⁻ (not COOH) AND for the acid hydrolysis discusses the protonation of the NH ₂ (to NH ₃ ⁺) and the presence of COOH rather than COONa /COO ⁻ .

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
3(b)	 A polymer is a long chain molecule formed when many molecules or units (ie monomers) link together. Polyester chains are formed by condensation with the loss of H₂O or HCl at each ester linkage. Polyesters contain ester linkages. C—O— O A single monomer must be a hydroxy alkanoic acid or hydroxy alkanoyl chloride eg HO(CH₂)₄COOH / HO-R-COOH or HO(CH₂)₄COCI / HO-R-COCI Two different monomers can be a diol and a dioic acid / a diol and a dioyl chloride / two different hydroxy alkanoic acids / two different hydroxy alkanoyl chlorides eg HOOC(CH₂)_nCOOH + HO(CH₂)_mOH CIOC(CH₂)_nCOCl + HO(CH₂)_mOH HOOC(CH₂)_n OH+ HOOC(CH₂)_mOH 	Description includes any TWO of the bullet points	Explanation shows understanding of the need for the monomers to be "double-ended" AND general or specific structures are described or drawn for a single monomer / two different monomers that could be used to form a polyester.	Full discussion showing understanding of terms used in the given statement Appropriate structures (general or specific) are drawn for • a single monomer and the repeating unit of the polyester formed from it AND • two different monomers and the repeating unit of the polyester formed from them.

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
SEVEN opportunities answered at Achievement level or higher.	EIGHT opportunities answered with at least FIVE at Merit level or higher.	NINE opportunities answered with at least TWO at Excellence level and FOUR at Merit level.
7 × A	5 × M plus 3 × A	2 × E plus 4 × M plus 3 × A